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Abstract We provide a proof that nonholonomically constrained Ricci flows of (pseudo)
Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we
consider flows of some physically valuable exact solutions in general relativity). There are
constructed and analyzed three classes of solutions of Ricci flow evolution equations defin-
ing nonholonomic deformations of Taub NUT, Schwarzschild, solitonic and pp-wave sym-
metric metrics into nonsymmetric ones.

Keywords Nonsymmetric metrics · Nonholonomic manifolds · Nonlinear connections ·
Nonholonomic Ricci flows · Taub NUT spacetimes · Solitons in gravity · pp-Waves

1 Introduction

One of the most remarkable results in modern mathematics following from the theory of
the Ricci flows [1, 2] is the proof of the Poincaré conjecture by Grisha Perelman [3–5]. It
states that every closed smooth simply connected three-dimensional manifold is topolog-
ically equivalent to a sphere. In a more general context, the Perelman’s results complete
the Hamilton’s program on Ricci flows, settle the second major conjecture (by Thurston) in
geometry and topology, and show a number of ways for further progress and applications in
mathematics and physics, see detailed reviews of results in Refs. [6–11].

It was shown in Refs. [10, 11] that Ricci flows of the (pseudo) Riemannian metrics may
result not only in generalized Lagrange and/or Finsler like geometries, and inversely, but
also in nonholonomic configurations enabled with nonsymmetric metrics if the evolution
equations are subjected to certain type of nonholonomic (nonintegrable) constraints. Here,
for our purposes, we cite the review [12] as the basic reference on modelling such geometries
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on nonholonomic manifolds and monographs [13, 14] on Lagrange–Finsler spaces defined
in metric compatible form on tangent bundles.

The surprising results that nonholonomic Ricci flows naturally relate the class of (pseudo)
Riemannian metrics to various types of geometries described by locally anisotropic and/or
nonsymmetric metrics and generalized connection structures follow from the evolution
equations of geometric objects and nonholonomic distributions. In such cases, one considers
flows on nonholonomic manifolds enabled with nonholonomic distributions inducing locally
fibred structures into conventional horizontal (h) and vertical (v) directions. One could be
developed a corresponding Ricci flow theory of metrics and nonholonomic distributions on
Riemann–Cartan (in particular, (pseudo) Riemannian) spaces possessing nontrivial torsion
structure defined in a metric compatible form by a linear connection. The corresponding
nontrivial nonholonomic distributions are defined by generic off-diagonal metrics estab-
lishing a “preferred” nonholonomic frame structure with associated nonlinear connection
(N-connection).1

On nonholonomic manifolds, one can be constructed two classes of “remarkable” metric
compatible linear connections: the Levi Civita and the so-called canonical distinguished
connection (d-connection) which are completely defined by a chosen metric structure. The
first linear connection is torsionless and the second one, vanishing on the globalized h- and
v-distributions, contains some nonzero h-v-coefficients induced by the N-connection/off-
diagonal metric coefficients.

In general, the Ricci tensor for the canonical d-connection is nonsymmetric even it is
defined by a symmetric metric structure. Together with the evolution of N-connection struc-
ture, this results in nontrivial nonsymmetric components of metrics induced by Ricci flows
of geometric objects on usual (pseudo) Riemannian spaces [10, 11]. The constructions hold
true for any models of symmetric and/or nonsymmetric theory of gravity which provides
an additional geometrical strong argument for geometrical and physical models with non-
symmetric metrics and nonholonomic structures.2 Such results can be obtained only from
evolution equations for fundamental geometric objects (like metrics and linear and nonlinear
connections) not involving gravitational and matter field equations.

It should be noted that none physical principle prohibits us to consider theories with
nonsymmetric metrics [15, 16] and the geometry of such spaces has a long and interesting
history of development and applications in physics and mechanics. There are known the
A. Einstein’s attempts to generalize his theory in order to unify gravity with electromag-
netism (when the nonsymmetric part of metric had been identified with the electromagnetic
field strength tensor), see Ref. [17], and then to elaborate a unified theory of physical fields
by introducing a complex metric field with Hermitian symmetry, see [18].

Then, L.P. Eisenhart has investigated the geometric properties of the so-called general-
ized Riemannian spaces with nonsymmetric metrics when the symmetric part is nondegen-
erated [19, 20]. He dealt with the problem of the linear connections which are compatible

1The generic off-diagonal metrics can not be diagonalized by coordinate transforms; we can work equiva-
lently with any system of local frames or coordinates but geometrically it is preferred to elaborate the con-
structions in a form adapted to the N-connection structure.
2It should be noted that the main results in the (holonomic, if to follow a terminology oriented to non-
holonomic generalizations) Hamilton–Perelman Ricci flow theory were derived under the assumptions that
the (pseudo) Riemannian/Kählerian metrics will flow positively into other (pseudo) Riemannian/Kählerian
metrics and the evolution equations are not subjected to additional constraints. Further generalizations
are possible for flows of geometric objects and structures when various classes of nonholonomic re-
strictions are introduced into consideration and the spacetime geometry is not constrained to be only of
symmetric/commutative. . . (pseudo) Riemannian type.
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with a general (nonsymmetric) metric structure (it is called the Eisenhart problem). It was
solved in an important particular case in [21] and retaken for the generalized Lagrange and
Finsler spaces in [22]; a review of such results is contained in Chapter 8 of monograph
[13]. The nonsymmetric gravity theory and its generalizations [15, 16, 23–25] with applica-
tions in modern astrophysics and cosmology [26, 27] consist a well defined and perspective
direction in gravity and field interactions theory and mathematical physics.

The aim of this paper is to provide a geometric motivation for gravity models with non-
symmetric metrics following Ricci flow theory. We also show how the anholonomic frame
method of constructing solutions evolution equations, see Refs. [28–32], can be applied for
generating solitonic pp-wave nonsymmetric deformations of Taub NUT and Schwarzschild
metrics. The second partner of this article [33] is devoted to the geometry of nonholonomic
manifolds enabled with nonsymmetric metric and nonlinear connection structure.

The work is organized as follows: In Sect. 2, we consider the evolution equations in Ricci
flow theory with nonholonomic constrains resulting in nonsymmetric metrics. Section 3 is
devoted to the anholonomic frame method in constructing exact solutions in gravity with
symmetric and nonsymmetric metric components and generalization of the approach for
generating solutions for evolution equations with nonholonomic constraints. In Sect. 4, we
construct a general class of solutions describing how nonholonomic deformations of four
dimensional Taub NUT spaces result in nonsymmetric metrics; we derive Ricci flow scenaria
when the evolution parameter is identified with the time like coordinate and the geometry
is defined by off-diagonal metrics and pp-wave configurations. We analyze nonholonomic
and nonsymmetric Ricci flows of Schwarzschild metrics induced by solitonic pp-waves,
when the evolution parameter is not related to spacetime coordinates, in Sect. 5. Finally, we
present conclusions and comment on some further perspectives in Sect. 6.

2 Nonsymmetric Ricci Flows

The aim of this section is to provide a geometric formulation for the systems of evolution
equations with nonholonomic Ricci flows transforming symmetric metrics into nonsymmet-
ric ones. We develop the results stated by Theorem 4.3 in Ref. [10]) and formulas (22)–(24)
in Ref. [11]). The reader may see additional discussions and details on the geometry of
nonlinear connections and nonholonomic manifolds and applications to physics in [12] and
introduction sections in Ref. [10, 11]. In monograph [34], there are contained the bulk of
proofs for geometric formulas and differential and tensor calculus adapted to the nonlinear
connection structure.

2.1 Preliminaries: N-Anholonomic Manifolds

Let V be a four dimensional nonholonomic manifold enabled with nonlinear connection
(N-connection) structure

N = Na
i (u)dxi ⊗ ∂

∂ya
(1)

defining a holonomic-nonholonomic splitting of dimension when n + m = 2 + 2, when the
tangent bundle T V splits as a Whitney sum

T V = hV⊕vV (2)
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into corresponding “horizontal” and “vertical” subspaces hV and vV. The local coordinates
on V are denoted in the form u = (x, y), or uα = (xi, ya), where the “horizontal” indices
run the values i, j, k, . . . = 1,2, . . . , n and the “vertical” indices run the values a, b, c, . . . =
n + 1, n + 2, . . . , n + m.3 The N-connection (1) states on V a preferred frame structure
eν = (ei , ea), where

ei = ∂

∂xi
− Na

i (u)
∂

∂ya
and ea = ∂

∂ya
, (3)

and the dual frame (coframe) structure eμ = (ei, ea), where

ei = dxi and ea = dya + Na
i (u)dxi . (4)

These formulas can be written in matrix forms,

eα = e α
α (u) ∂α and eβ = eβ

β(u) duβ,

where

e α
α =

[
δ

i

i Nb
i (u) δ

a

b

0 δ
a

a

]
, eβ

β =
[

δi
i (u) −Nb

k (u) δk
i

0 δa
a

]
, (5)

when δ
i

i is the Kronecker delta function.4 The vielbeins (4) satisfy the nonholonomy rela-
tions

[eα, eβ ] = eαeβ − eβeα = W
γ

αβeγ (6)

with (antisymmetric) nontrivial anholonomy coefficients Wb
ia = ∂aN

b
i and Wa

ji = �a
ij , where

�a
ij = ∂Na

i

∂xj
− ∂Na

j

∂xi
+ Nb

i

∂Na
j

∂yb
− Nb

j

∂Na
i

∂yb
(7)

is the curvature of N-connection.
A distinguished symmetric metric (in brief, symmetric d-metric) on a N-anholonomic

manifold V is a usual second rank symmetric tensor g which with respect to a N-adapted
basis (4) can be written in the form

g = gij (x, y) ei ⊗ ej + hab(x, y) ea ⊗ eb. (8)

With respect to a local coordinate basis duα = (dxi, dya), this metric can be equivalently
written in the form

g = g
αβ

(u) duα ⊗ duβ,

where

g
αβ

=
[

gij + Na
i Nb

j hab Ne
j hae

Ne
i hbe hab

]
. (9)

3For the tangent bundle, V = T M, we can consider that both type of indices run the same values.
4We shall use always “boldface” symbols if it would be necessary to emphasize that certain spaces (geo-
metrical objects) are provided (adapted) with (to) a N-connection structure. With respect to N-adapted bases,
we can introduce respectively, distinguished vectors, tensors, spinors, . . . , in brief, d-vectors, d-tensors, d-
spinors, . . . .
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In a more general case, one can be considered nonsymmetric metric structures ǧ = g+a,

when (for instance, in local form)

ǧ
αβ

= g
αβ

+ aαβ, (10)

g
αβ

= g
βα

, aαβ = −aβα.

The decomposition into symmetric and anti-symmetric components holds true with respect
to any local bases including the N-adapted ones.

A distinguished connection (d-connection) D on a N-anholonomic manifold V is a lin-
ear connection conserving under parallelism the Whitney sum (2). One writes that D =
(hD, vD), or Dα = (Di,Da), when the coefficients with respect to N-adapted basis (3) and
(4) are parametrized in the form D = {�γ

αβ = (Li
jk,L

a
bk,C

i
jc,C

a
bc)}, with hD = (Li

jk,L
a
bk)

and vD = (Ci
jc,C

a
bc).

The torsion of a d-connection D = (hD, vD) for any d-vectors X,Y is defined by d-
tensor field

T(X,Y) � DXY − DYX − [X,Y]. (11)

The nontrivial torsion coefficients are parametrized in the form

T = {Tα
βγ = −Tα

γβ = (T i
jk, T

i
ja, T

a
jk, T

b
ja, T

b
ca)},

where

T i
jk = Li

jk − Li
kj , T i

ja = −T i
aj = Ci

ja, T a
ji = �a

ji,

T a
bi = −T a

ib = ∂Na
i

∂yb
− La

bi, T a
bc = Ca

bc − Ca
cb, (12)

can be computed by a d-form calculus for �α
β = �α

βγ eγ , with the coefficients defined with
respect to (4) and (3), when T = {T α},

T α � Deα = deα + �α
β ∧ eβ . (13)

By a straightforward d-form calculus, we can find the N-adapted components of the cur-
vature R = {Rα

β}, when

R(X,Y) � DXDY − DYDX−D[X,Y], (14)

with

Rα
β � D�α

β = d�α
β − �

γ

β ∧ �α
γ = Rα

βγ δeγ ∧ eδ, (15)

when Rα
βγ δ splits into N-adapted components:

Ri
hjk = ekL

i
hj − ejL

i
hk + Lm

hjL
i
mk − Lm

hkL
i
mj − Ci

ha�
a
kj ,

Ra
bjk = ekL

a
bj − ejL

a
bk + Lc

bjL
a
ck − Lc

bkL
a
cj − Ca

bc�
c
kj ,

Ri
jka = eaL

i
jk − DkC

i
ja + Ci

jbT
b
ka, (16)

Rc
bka = eaL

c
bk − DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebC

i
jc + Ch

jbC
i
hc − Ch

jcC
i
hb,
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Ra
bcd = edC

a
bc − ecC

a
bd + Ce

bcC
a
ed − Ce

bdC
a
ec.

Contracting respectively the components of (16), one proves that the Ricci tensor Rαβ �
Rτ

αβτ is characterized by h- v-components, i.e. d-tensors,

Rij � Rk
ijk, Ria � −Rk

ika, Rai � Rb
aib, Rab � Rc

abc. (17)

It should be noted that this tensor is not symmetric for arbitrary d-connections D.

From the class of arbitrary d-connections D on V, one distinguishes those which are
metric compatible (metrical d-connections) satisfying the condition Dg = 0 including all h-
and v-projections

Djgkl = 0, Dagkl = 0, Djhab = 0, Dahbc = 0.

We emphasize that in this work we define the metric compatibility with respect to the sym-
metric part of a metric, i.e. with respect to g, considering that the antisymmetric part a will
be induced noholonomically by Ricci flows, also by g. In a more general case, it is possible
from the very beginning to work with ǧ, see discussion in Ref. [33].

The Levi Civita linear connection � = {�

α
βγ } is uniquely defined by the symmetric met-

ric structure (9) by the conditions � T = 0 and �g = 0. It should be noted that this connection
is not adapted to the distribution (2) because it does not preserve under parallelism the h-
and v-distribution.

One exists a N-adapted equivalent of the Levi Civita connection ∇, called the canonical
d-connection D̂, which is defined also only by a metric g in a metric compatible form,
when T̂ i

jk = 0 and T̂ a
bc = 0 but T̂ i

ja, T̂
a
ji and T̂ a

bi are not zero, see (12). The coefficients

̂

γ

αβ = (L̂i
jk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc) of the canonical d-connection, with respect to the N-adapted

frames, are:

L̂i
jk = 1

2
gir (ekgjr + ejgkr − ergjk),

L̂a
bk = eb(N

a
k ) + 1

2
hac(ekhbc − hdc ebN

d
k − hdb ecN

d
k ), (18)

Ĉi
jc = 1

2
gikecgjk, Ĉa

bc = 1

2
had(echbd + echcd − edhbc).

The nontrivial N-adapted coefficients for torsion, curvature and Ricci d-tensors, i.e T̂α
βγ ,

R̂α
βγ δ and R̂αβ, can be computed in explicit form my introducing the coefficients (18) into

respective formulas (12), (16) and (17).
We note that any geometric construction for the canonical d-connection D̂ can be re-

defined by the Levi Civita connection by using the formula

�

γ

αβ = �̂
γ

αβ + �Z
γ

αβ, (19)

where the both connections �

γ

αβ, �̂
γ

αβ and the distortion tensor �Z
γ

αβ can be defined by
the generic off-diagonal metric (9), or (equivalently) by d-metric (8) and the coefficients of
N-connection (1).5 If we work with nonholonomic constraints on the dynamics/geometry of

5See, for instance, Refs. [10–12], for explicit formulas expressing �Z
γ
αβ through the components

gij , hab,Na
i
, their respective inverse values and their partial derivatives.
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gravity fields, it is more convenient to use a N-adapted approach. For other purposes, it is
preferred to use only the Levi Civita connection. Introducing the distortion relation (19) into
respective formulas (12), (16) and (17) written for �̂

γ

αβ, we get the deformation relations of
type

�T
α
βγ = T̂α

βγ + T
�
Z

γ

αβ = 0,

�R
α
βγ δ = R̂α

βγ δ + R
�

Ẑα
βγ δ, �R βγ = R̂ βγ + Ric

�
Ẑ βγ , (20)

where �R βγ = �R γβ but R̂ βγ �= R̂ γβ and Z-values can be computed by an explicit defor-
mation calculus for respective tensors.

Finally, we conclude that prescribing a nonintegrable splitting by a nonholonomic distrib-
ution, or a N-adapted frame structure, on a (pseudo) Riemannian manifold one can model the
geometry of this manifold in two equivalent forms, both defined by the same metric struc-
ture (9): the first one is the standard approach with the Levi Civita connection, resulting in
nonzero torsion and symmetric Ricci tensor, and the second one is the N-adapted approach,
with induced torsion (by the off-diagonal terms of the metric (9)) and nonsymmetric Ricci
tensor for the canonical d-connection.

2.2 Nonholonomic Ricci Flows and Nonsymmetric Metrics

The normalized holonomic Ricci flows on a real parameter χ ∈ [0, χ0), for symmetric met-
rics with respect to the coordinate base ∂α = ∂/∂uα, are described by the equations

∂

∂χ
gαβ = −2 �Rαβ + 2r

5
gαβ, (21)

where the normalizing factor r = ∫
�RdV/dV, with the Ricci scalar �R = gαβ

�Rαβ is
defined by the metric structure gαβ and Levi Civita connection ∇, is introduced in order
to preserve the volume V. For N-anholonomic Ricci flows, the coefficients gαβ are para-
metrized in the form (9). Heuristic arguments for postulating such equations, similarly to
the Einstein equations, are discussed in Refs. [2, 3, 6–9] and, for nonholonomic manifolds,
[10, 11].

The Ricci flow equations (21) can be written in equivalent form by distinguishing the
N-connection coefficients, but preserving the Ricci tensor defined by the Levi Civita con-
nection,

∂

∂χ
gij = 2

[
Na

i Nb
j

(
�Rab − r

5
hab

)
− �Rij + r

5
gij

]
− hcd

∂

∂χ
(Nc

i N
d
j ), (22)

∂

∂χ
hab = −2

(
�Rab − r

5
hab

)
, (23)

∂

∂χ
(Ne

j hae) = −2

(
�Ria − r

5
Ne

j hae

)
, (24)

where the coefficients are defined with respect to local coordinate basis.6

6We underline some indices or symbols for geometric objects if we wont to emphasize that they are defined
with respect to a coordinate basis.
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With respect to N-adapted frames, the nonholonomic Ricci flows for the canonical d-
connection D̂ when some off-diagonal metric coefficients can be nonsymmetric are defined
by equations

∂

∂χ
gij = −2R̂ij + 2r

5
gij − hcd

∂

∂χ
(Nc

i N
d
j ), (25)

∂

∂χ
hab = −2R̂ab + 2r

5
hab, (26)

∂

∂χ
ǧia = R̂ia,

∂

∂χ
ǧai = R̂ai , (27)

where gαβ = [gij , hab] with respect to N-adapted basis (4), y3 = v and χ can be, for instance,
the time like coordinate, χ = t, or any parameter or extra dimension coordinate. It should
be emphasized that there are three important differences between the system of (22)–(24)
and (25)–(27):

1. The first system is for connection ∇ but the second one is for D̂.

2. Because, in general, R̂ia �= R̂ai , see formulas (17) for D̂, even R̂αβ is stated to be defined
by a symmetric (9), equivalently by a symmetric (8), we must extend the metric to contain
nonsymmetric coefficients of type (10), when ǧib = gib + aib and ǧbi = gbi + abi, where
gib = gbi and aib = −abi, and (27) transform into

∂

∂χ
gia = R̂(ia),

∂

∂χ
abi = R̂[bi], (28)

where R̂ia = R̂(ia) + R̂[bi] is the decomposition of this d-tensor into symmetric and
antisymmetric parts. In Refs. [10, 11],7 we restricted our considerations only for N-
anholonomic configurations with R̂ia(χ) = 0 when the Ricci flows transforms symmetric
metrics only into symmetric ones. From (28), one follows that we get nontrivial antisym-
metric values abi(χ) even if ∂

∂χ
gia = 0 for R̂(ia) = R̂[bi] = 0. It is easy to prove this with

respect to a coordinate basis when (28) transform into

∂

∂χ
(Ne

j abe) = 0, (29)

where abe are coordinate coefficients of abi formally written with respect to N-adapted
basis (compare with equations (24) for the Levi Civita connection, redefined in N-adapted
form for the canonical d-connection). The equation (29) have nontrivial solutions for
Ne

j (χ) and abe(χ) with nontrivial �Rαβ, but with R̂(ia) = R̂[bi] = 0, see deformation
formulas (20).

3. The system of equations for N-adapted Ricci flows (25)–(27) must be completed with a
system of equations for the N-adapted frames (5),

eα(χ) = e α
α (χ,u)∂α

7We note that the system of denotations for the nonsymmetric metrics in this work are elaborated in a different
form in order to try to elaborate in our further works a unified approach to nonholonomic geometries both
with symmetric and nonsymmetric metrics.
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defined by the coefficients

e α
α (χ,u) =

[
e

i

i (χ,u) Nb
i (χ,u) e

a

b (χ,u)

0 e
a

a (χ,u)

]
,

with

gij (χ,u) = e
i

i (χ,u) e
j

j (χ,u)ηij and hab(χ,u) = e a
a (χ,u) e

b

b (χ,u)ηab,

where ηij = diag[±1, . . . ± 1] and ηab = diag[±1, . . . ± 1] establish the signature of
gαβ(u), is given by equations

∂

∂χ
e α
α = gαβR̂βγ e

γ

α ,

see details in Refs. [10, 11]. Here we note that Ricci flows of N-adapted frames are
defined by the equations

∂

∂χ
e α
α = gαβ

�Rβγ e
γ

α

if we define the Ricci flow equations in non N-adapted form just only for the Levi Civita
connection ∇.

In further sections, we shall develop a geometric method of constructing exact solutions
for the system of Ricci flow evolution equations (25), (26) and (29) defining N-adapted
transforms of symmetric metrics into nonsymmetric ones. We shall also present explicit
examples when physically valuable exact solutions in general relativity evolve under such
nonholonomic flows into respective nonsymmetric metrics.

3 An Ansatz for Constructing Nonsymmetric Ricci Flow Solutions

We consider a four dimensional (4D) manifold V of necessary smooth class and conven-
tional splitting of dimensions dim V = n + m for n = 2 and m = 2. The local coordinates
are labeled in the form uα = (xi, ya) = (xi, y3 = v, y4 = y), for i = 1,2 and a, b, . . . = 3,4.

Any coordinates from a set uα can be a three dimensional (3D) space or time like variable
when Ricci flows of geometric objects will be parametrized by a real χ.

3.1 Off-Diagonal Ansatz for Einstein Spaces and Ricci Flows

We consider an ansatz of type (8) parametrized in the form

g = g1(x
1, x2)dx1 ⊗ dx1 + g2(x

1, x2)dx2 ⊗ dx2

+ h3(x
k, v) δv ⊗ δv + h4(x

k, v) δy ⊗ δy,

δv = dv + wi(x
k, v)dxi, δy = dy + ni(x

k, v)dxi (30)

with the coefficients defined by some necessary smooth class functions

g1,2 = g1,2(x
1, x2), h3,4 = h3,4(x

i, v), wi = wi(x
k, v), ni = ni(x

k, v).
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The off-diagonal terms of this metric, written with respect to the coordinate dual frame
duα = (dxi, dya), can be redefined to state a N-connection structure N = [N3

i = wi(x
k, v),

N4
i = ni(x

k, v)] with a N-elongated co-frame (4) parametrized as

e1 = dx1, e2 = dx2, e3 = δv = dv + widxi, e4 = δy = dy + nidxi . (31)

This coframe is dual to the local basis

ei = ∂

∂xi
− wi(x

k, v)
∂

∂v
− ni(x

k, v)
∂

∂y
, e3 = ∂

∂v
, e4 = ∂

∂y
. (32)

We emphasize that the metric (30) does not depend on variable y, i.e. it posses a Killing
vector e4 = ∂/∂y, and distinguishes the dependence on the so-called “anisotropic” variable
y3 = v.

In order to model Ricci flows, we have to consider dependencies on flow parameter of
the metric coefficients,

χ g = g(χ) = g1(x
k,χ)dx1 ⊗ dx1 + g2(x

k,χ)dx2 ⊗ dx2

+ h3(x
k, v,χ) χδv ⊗ χδv + h4(x

k, v,χ) χδy ⊗ χδy,

χδv = dv + wi(x
k, v,χ)dxi, χ δy = dy + ni(x

k, v,χ)dxi (33)

with corresponding flows for N-adapted bases,

eα = (ei , ea) → χ eα = ( χ ei , ea) = eα(χ) = (ei (χ), ea),

eα = (ei, ea) → χ eα = (ei, χ ea) = eα(χ) = (ei, ea(χ))

defined by wi(x
k, v) → wi(x

k, v, λ), ni(x
k, v) → ni

(
xk, v,λ

)
in (32), (31).

Computing the components of the Ricci and Einstein tensors for the metric (33) (see
details on similar calculus in Refs. [10–12]), one proves that the corresponding family of
Ricci tensors for the canonical d-connection with respect to N-adapted frames are compati-
ble with the sources (they can be any matter fields, string corrections, Ricci flow parameter
derivatives of metric, . . .)

ϒα
β = [ϒ1

1 = ϒ2
2 = ϒ2(x

k, v,χ), ϒ3
3 = ϒ4

4 = ϒ4(x
k,χ)]. (34)

For simplicity, in this work, we shall analyze Ricci flows of the so-called nonholonomic
Einstein spaces defined by solutions of equations

R̂i
j = hλ(xi, χ)δi

j , R̂a
b = vλ(xi, v,χ)δa

b ,

R̂3i = R̂i3 = 0, R̂4i = R̂i4 = 0, (35)

where hλ(xi, χ) and vλ(xi, v,χ) state an effective polarized cosmological constant (in our
case, they are nonhomogeneous and anisotropic dependencies on coordinates) which can be
computed for certain models of gravity with quantum corrections, higher order contributions
and so on.

The equations (35) for the ansatz (33) with any fixed value of χ, i.e. for the ansatz (30),
transform into this system of partial differential equations:
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R̂1
1 = R̂2

2(χ)

= 1

2g1g2

[
g•

1g
•
2

2g1
+ (g•

2)
2

2g2
− g••

2 + g
′
1g

′
2

2g2
+ (g

′
1)

2

2g1
− g

′′
1

]
= hλ(xi, χ), (36)

R̂3
3 = R̂4

4(χ) = 1

2h3h4

[
h∗

4

(
ln

√|h3h4|
)∗ − h∗∗

4

]
= vλ(xi, v,χ), (37)

R̂3i = −wi(χ)
β(χ)

2h4(χ)
− αi(χ)

2h4(χ)
= 0, (38)

R̂4i = − h4(χ)

2h3(χ)

[
n∗∗

i (χ) + γ (χ)n∗
i (χ)

] = 0, (39)

where, for h∗
3,4 �= 0,

αi(χ) = h∗
4(χ)∂iφ(χ), β(χ) = h∗

4(χ) φ∗(χ), (40)

γ (χ) = 3h∗
4(χ)

2h4(χ)
− h∗

3(χ)

h3(χ)
, φ(χ) = ln

∣∣∣∣∣ h∗
4(χ)√|h3(χ)h4(χ)|

∣∣∣∣∣, (41)

when the necessary partial derivatives are written in the form a• = ∂a/∂x1, a′ = ∂a/∂x2,

a∗ = ∂a/∂v. We note that the off-diagonal gravitational interactions and Ricci flows can
model locally anisotropic configurations even if λ2 = λ4, or both values vanish.

Summarizing the results for (30) with arbitrary signatures εα = (ε1, ε2, ε3, ε4), where
εα = ±1 and h∗

3 �= 0 and h∗
4 �= 0, one proves, see details in [10–12], that any off-diagonal

metric

◦g = ε1g1(x
i) dx1 ⊗ dx1 + ε2g2(x

i) dx2 ⊗ dx2

+ ε3h
2
0(x

i)[f ∗(xi, v)]2|ς(xi, v)| δv ⊗ δv

+ ε4[f (xi, v) − f0(x
i)]2 δy4 ⊗ δy4,

δv = dv + wk(x
i, v)dxk, δy4 = dy4 + nk(x

i, v)dxk, (42)

with the coefficients being of necessary smooth class and the indices with “hat” running the
values i, j, . . . = 1,2, where gk(x

i) is a solution of the 2D equation (36) for a given source
ϒ4(x

i),

ς(xi, v) = ς[0](xi) + ε4

8
h2

0(x
i)

∫
vλ(xk, v)f ∗(xi, v)[f (xi, v) − f0(x

i)]dv,

and the N-connection coefficients N3
i = wi(x

k, v), N4
i = ni(x

k, v) are computed following
the formulas

wi = −∂iς(xk, v)

ς∗(xk, v)
, (43)

nk = 1nk(x
i) + 2nk(x

i)

∫ [f ∗(xi, v)]2ς(xi, v)

[f (xi, v) − f0(xi)]3
dv, (44)

define respectively exact solutions of the Einstein equations (38) and (39). It should be em-
phasized that such solutions depend on arbitrary functions f (xi, v), for f ∗ �= 0, f0(x

i),
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h2
0(x

i), ς[0](xi), 1nk(x
i), 2nk(x

i) and vλ(xk̂, v), hλ(xî). Such values for the correspond-
ing signatures εα = ±1 have to be stated by certain boundary conditions following some
physical considerations. Here we note that this class of solutions of Einstein equations with
nonholonomic variable depend on integration functions. It is more general than those for
diagonal ansatz depending, for instance, on one radial like variable like in the case of the
Schwarzschild solution (when the Einstein equations are reduced to an effective nonlinear
ordinary differential equation, ODE). In the case of ODE, the integral varieties depend on
integration constants to be defined from certain boundary/asymptotic and symmetry con-
ditions, for instance, from the constraint that far away from the horizon the Schwarzschild
metric contains corrections from the Newton potential. Because our ansatz (30) transforms
(35) in a system of nonlinear partial differential equations transforms, the solutions depend
not only on integration constants but also on certain classes of integration functions.

The ansatz of type (30) with h∗
3 = 0 but h∗

4 �= 0 (or, inversely, h∗
3 �= 0 but h∗

4 = 0) consist
more special cases and request a bit different methods for constructing exact solutions.

3.2 Solutions for Ricci Flows and Nonsymmetric Metrics

For families of solutions parametrized by χ, we consider flows of the generating func-
tions, g1(x

i, χ), or g2(x
i, χ), and f (xi, v,χ), and various types of integration functions

and sources, for instance, nk[1](xi, χ) and nk[2](xi, χ) and ϒ2(x
k̂, v,χ), respectively, in for-

mulas (43) and (44). Let us analyze an example of exact solutions of (25), (26) and (29)
defined by an ansatz with nontrivial nonsymmetric component for the metric parametrized
in the form abc(x

i, χ).

We search a class of solutions when

g1 = ε1�(xi,χ), g2 = ε2�(xi,χ), �(xi,χ) = exp{2ψ(xi,χ)},
h3 = h3(x

i, v), h4 = h4(x
i, v), a34 = a34(x

i, χ)

for a family of ansatz (33) with any prescribed signatures εα = ±1 and non-negative func-
tions � and h. The equations (29) results into

∂χ (w2a34) = 0 and ∂χ (n1a34) = 0. (45)

Following a tensor calculus, adapted to the N-connection, for the canonical d-connection,
we express the integral variety for a class of nonholonomic Ricci flows as

ε1(ln |� |)•• + ε2(ln |� |)′′ = 2 vλ − h4∂χ (n2)
2, (46)

h3 = hς3

for

ς3(x
i, v) = ς3[0](xi) − 1

4

∫ vλhh4

h∗
4

dv,

√|h| = h[0](xi)
(√

|h4(xi, v)|
)∗

(47)

and, for ϕ = − ln |√|h3h4|/|h∗
5||,

w1 = (ϕ∗)−1ϕ•,w2 = (ϕ∗)−1ϕ′, (48)

n1 = n2 = 1n(xi,χ) + 2n(xi,χ)

∫
dv h3/

(√|h4|
)3

,
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where the partial derivatives are denoted in the form ϕ• = ∂ϕ/∂x1, ϕ
′ = ∂ϕ/∂x2, ϕ∗ =

∂ϕ/∂v, ∂χ = ∂/∂χ, and arbitrary h4 when h∗
4 �= 0. For λ = 0, we shall consider ς3[0] = 1

and h[0](xi) = const in order to solve the vacuum Einstein equations. There is a class of
solutions when

h4

∫
dv h3/

(√|h4|
)3 = C(xi),

for a function C(xi). This is compatible with the condition (47) and we can chose such
configurations, for instance, with 1n = 0 and any 2n(xi,χ) and �(xi,χ) solving (46).

Putting together (46)–(48), we get a class of solutions of the system (36)–(39) for non-
holonomic Ricci flows of metrics of type (33),

χ g = �(xi,χ)
[
ε1dx1 ⊗ dx1 + ε2dx2 ⊗ dx2

]
+ h3(x

i, v) δv ⊗ δv + h4(x
i, v) χδy ⊗ χδy,

δv = dv + w1(x
i, v)dx1 + w2(x

i, v)dx2, (49)

χδy = dy + n1(x
i, v,χ)[dx1 + dx2].

Such solutions describe in general form the Ricci flows of nonholonomic Einstein spaces
constrained to relate in a mutually compatible form the evolution of horizontal part of metric,
�(xi,χ), with the evolution of N-connection coefficients n1 = n2 = n1(x

i, v,χ). We have
to impose certain boundary/ initial conditions for χ = 0, beginning with an explicit solution
of the Einstein equations, in order to define the integration functions and state an evolution
scenario for such classes of metrics and connections.

The family of metrics (49) defines Ricci flows of N-anholonomic Einstein spaces con-
structed for the canonical d-connection. We can extract solutions for the Levi Civita connec-
tion if we constrain the coefficients of such metrics to satisfy the conditions:

ε1ψ
••(xk,χ) + ε2ψ

′′
(xk,χ) = − hλ(xk,χ),

h∗
4(x

i, v)φ(xi, v)

h3(xi, v)h4(xi, v)
= − vλ(xi, v), (50)

w2(x
i, v)w∗

1(x
i, v) − w1(x

i, v)w∗
2(x

i, v) = w•
2(x

i, v) − w′
1(x

i, v),

n′
1(x

k,χ) − n•
2(x

k,χ) = 0,

where � = eψ(xk,χ), ni = ni(x
k,χ), wi = ∂iφ/φ∗, see (41).8

We can extend the class of metrics (33) to nontrivial nonsymmetric configurations with

χ ǧ = χ g + χ a

when χ a = a34(x
i, v,χ)dv ∧ dy is constrained to satisfy the conditions (45). Here we note

that constructing exact solutions with generic off-diagonal metrics and nonholonomic vari-
ables for Ricci flows in Refs. [28–32] we took the trivial solution with a34 = 0. In this paper,
a34(x

i, v,χ) can be arbitrary functions solving the nonholonomic Ricci flow equations. It
can be nonzero, even we started with a symmetric metric configuration but the N-connection

8Proofs of such conditions are given, for instance, in Refs. [31, 32].
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structure naturally generates a nonsymmetric metric component. Such metrics are not con-
strained to satisfy the field equations in a model of nonsymmetric gravity like in Refs. [15,
16, 23–25]. For the ansatz considered in this section, we can consider a week decomposition
around χ g when χ a is also constrained to satisfy the corresponding system of gravitational
field equations, for certain values of χ. A comprehensive study of Ricci flows of solutions
of nonsymmetric gravity is a topic for further our investigations.

4 pp-Wave Ricci Flows of Taub-NUT Metrics into Nonsymmetric Metrics

The anholonomic frame method can be applied in order to generate Ricci flow solutions
for various classes 4D metrics [29, 32]. In this section, we examine how nonholonomic
Ricci flows of a Taub-NUT metric may result in nonsymmetric configurations if the flow
parameter is associated to a time like coordinate for pp-waves.

We consider a ‘primary’ ansatz written in a form similar to (8)

g̃ = g̃1(x
k, v, y4)(dx1)2 + g̃2(x

k, v, y4)(dx2)2 (51)

+ h̃3(x
k, v, y4)(b̌3)2 + h̃4(x

k, v, y4)(b̌4)2,

b̃3 = dv + w̃i(x
k, v, y4) dxi, b̃4 = dy4 + ñi (x

k, v, y4) dxi,

following the parametrizations

x1 = r, x2 = ϑ,y3 = v = p,y4 = ϕ

g̃1(r) = F−1(r), g̃2(r) = (r2 + n2),

h̃3(r) = −F(r), h̃4(r,ϑ) = (r2 + n2)a(ϑ),

w̃1(ϑ) = −2nw(ϑ), w̃2 = 0, ñi = 0,

where the functions and coordinates are those for the quadratic element

ds̃2 = F−1dr2 + (r2 + n2)dϑ2 − F(r)[dt − 2nw(ϑ)dϕ]2 + (r2 + n2)a(ϑ)dϕ2 (52)

defining the topological Taub-NUT-AdS/dS spacetimes [35–37] with NUT charge n. The
function F(r) takes three different values,

F(r) = r4 + (εl2 + n2)r2 − 2μrl2 + εn2(l2 − 3n2) + (1 − |ε|)n2

l2(n2 + r2)

for ε = 1,0,−1, defining respectively⎧⎨
⎩

U(1) fibrations over S2;
U(1) fibrations over T 2;
U(1) fibrations over H 2;

for

⎧⎨
⎩

a(ϑ) = sin2 ϑ,w(ϑ) = cosϑ,

a(ϑ) = 1,w(ϑ) = ϑ,

a(ϑ) = sinh2 ϑ,w(ϑ) = coshϑ.

The ansatz (52) for ε = 1,0,−1 but n = 0 recovers correspondingly the spherical, toroidal
and hyperbolic Schwarzschild-AdS/dS solutions of 4D Einstein equations with cosmolog-
ical constant λ = −3/l2 and mass parameter μ. The metrics (51) and (52) are related by
coordinate transform (r,ϑ, t, ϕ) → (r,ϑ,p(ϑ, t, ϕ),ϕ) with a new time like coordinate p

when

dt − 2nw(ϑ)dϕ = dp − 2nw(ϑ)dϑ,
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and t → p are substituted in (52) for

t → p = t −
∫

ν−1(ϑ,ϕ)dξ(ϑ,ϕ)

with

dξ = −ν(ϑ,ϕ)d(p − t) = ∂ϑξ dϑ + ∂ϕξdϕ,

when

d(p − t) = 2nw(ϑ)(dϑ − dϕ).

The last formulas state that the functions ν(ϑ,ϕ) and ξ(ϑ,ϕ) are taken to solve the equations

∂ϑξ = −2nw(ϑ)ν and ∂ϕξ = 2nw(ϑ)ν.

For instance, the solutions of such equations are generated by

ξ = ef (ϕ−ϑ) and ν = 1

2nw(ϑ)

df

dx
ef (ϕ−ϑ)

for x = ϕ − ϑ.

We perform an anholonomic transform Ň → N and ǧ = (ǧ, ȟ) → g = (g, h), when

g1 = η1(r,ϑ)g̃1(r), g2 = η2(r,ϑ)g̃2(r),

h3 = η3(r,ϑ,p)h̃3(r), h4 = η4(r,ϑ,p)h̃4(r,ϑ),

w1 = η3
1(r,ϑ,p)w̃1(ϑ), w2 = w2(r,ϑ,p),

n1 = n1(r,ϑ,p), n2 = n2(r,ϑ,p). (53)

This results in the “target” metric ansatz

g = g1(r,ϑ)(dr)2 + g2(r,ϑ)(dϑ)2 + h3(r,ϑ,p)(b3)2 + h4(r,ϑ,p)(b4)2,

b3 = dp + w1(r,ϑ,p) dr + w2(r,ϑ,p) dϑ, (54)

b4 = dϕ + n1(r,ϑ,p) dr + n2(r,ϑ,p) dϑ.

Our aim is to state the coefficients when this off-diagonal metric ansatz defines solutions
of the nonholonomic Ricci flow equations (25), (26) and (29) for χ = p. We shall construct
a family of exact solutions of the system of equations with polarized cosmological constants
(36)–(39) following the same steps used for deriving formulas (46)–(48) for the metric (49).
By a corresponding 2D coordinate transform xĩ → xĩ(r,ϑ), the horizontal component of
the family of metrics (54) can be always diagonalized and represented in conformally flat
form,

g1(r,ϑ)(dr)2 + g2(r,ϑ)(dϑ)2 = e2ψ(x̃i )
[
ε1(dx 1̃)2 + ε2(dx 2̃)2

]
,

where the values εi = ±1 depend on chosen signature and ψ(xĩ) is a solution of

ε1ψ
•• + ε2ψ

′′ = hλ(xĩ).
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For other metric coefficients, one obtains the relations

φ(r,ϑ,p) = ln
∣∣∣h∗

4/
√|h3h4|

∣∣∣ ,
for

(eφ)∗ = −2λ[v](r,ϑ,p)
√|h3h4|,

|h3| = 4e−2φ(r,ϑ,p)
[(√|h4|

)∗]2
, |h∗

4| = −(eφ)∗/4 vλ.

It is convenient to represent such solutions in the form

h4 = ε4[b(r,ϑ,p) − b0(r,ϑ)]2, h3 = 4ε3e
−2φ(r,ϑ,p)[b∗(r,ϑ,p)]2, (55)

where εa = ±1 depend on fixed signature, b0(r,ϑ) and φ(r,ϑ,p) can be arbitrary functions
and b(r,ϑ,p) is any function with b∗ related to φ and vλ.

The N-connection coefficients are of type

nk = 1nk(r,ϑ) + 2nk(r,ϑ) n̂k(r,ϑ,p),

where

n̂k(r,ϑ,p) =
∫

h3(
√|h4|)−3dp,

and 1nk(r,ϑ) and 2nk(r,ϑ) are integration functions and h∗
4 �= 0.

The above constructed coefficients for the metric and N-connection depend on arbitrary
integration functions. We have to constrain such integral varieties in order to construct Ricci
flow solutions with the Levi Civita connection, see similar details in Sect. 3 of Ref. [29]. One
considers a matrix equation for matrices g̃(r,ϑ) = [2 hλ(r,ϑ) gij (r,ϑ)] and w̃(r,ϑ,p) =
[wi(r,ϑ,p) wj (r,ϑ,p)]

g̃(r,ϑ) = h3(r,ϑ,p)
∂

∂p
w̃(r,ϑ,p). (56)

This equation can be compatible for such 2D systems of coordinates when g̃ is not diagonal
because w̃ is also not diagonal. For 2D subspaces, the coordinate and frame transforms are
equivalent but such configurations should be correspondingly adapted to the nonholonomic
structure defined by w̃(r,ϑ,p) which is possible for a general 2D coordinate system. One
introduces the transforms

gij = ei′
i (xk′

(r,ϑ))e
j ′

j (xk′
(r,ϑ))gi′j ′(xk′

)

and

wi′(x
k′
) = ei

i′(x
k′
(r,ϑ))wi((r,ϑ,p))

associated to a coordinate transform (r,ϑ) → xk′
(r,ϑ)) with gi′j ′(xk′

) defining, in general,
a symmetric but non-diagonal (2 × 2)-dimensional matrix.

The equation (56) can be integrated in explicit form by separation of variables in φ,b,

h3 and wi′ , when

φ = φ̂(xi′)φ̌(p),h3 = ĥ3(x
i′)ȟ3(p),
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wi′ = ŵi′(x
k′
)q(p), for ŵi′ = −∂i′ ln |φ̂(xk′

)|, q = (∂pφ̌(p))−1

where separation of variables for h3 is related to a similar separation of variables b =
b̂(xi′)b̌(p) as follows from (55). We get the matrix equation

g̃(xk′
) = α0ĥ3(x

i′)w̃0(x
k′
),

where the matrix w̃0 has components (ŵi′ŵk′) and constant α0 �= 0 is chosen from any
prescribed relation

ȟ3(p) = α0∂p

[
∂pφ̌(p)

]−2
. (57)

We conclude that any given functions φ̂(xk′
), φ̌(p) and ĥ3(x

i′) and constant α0 we can
generate solutions of the Ricci flow equations (25) and (26) for ni = 0 with the metric
coefficients parametrized in the same form as for the solution of the Einstein equations
(36)–(39). In a particular case, we can take φ̌(p) to be a periodic or solitonic type function.

The last step in constructing flow solutions is to solve (26) for the ansatz (54) redefined
for coordinates xk′ = xk′

(r,ϑ),

∂

∂p
ha = 2 vλ(xk′

,p) ha.

This equation is compatible if h4 = ς(xk′
)h3 for any prescribed function ς(xk′

). We can
satisfy this condition by corresponding parametrizations of function φ = φ̂(xi′) φ̌(p) and/or
b = b̂(xi′)b̌(p), see (55). As a result, we can compute the effective cosmological constant
for such Ricci flows,

λ[v](xk′
,p) = ∂p ln |h3(x

k′
,p)|,

which for solutions of type (57) is defined by a polarization running in time,

λ[v](p) = α0∂
2
p[∂pφ̌(p)]−2.

In this case, we can identify α0 with a cosmological constant λ = −3/l2, for primary Taub-
NUT configurations, if we choose such φ̌(p) that ∂2

p[∂p φ̌(p)]−2 → 1 for p → 0.

Putting together the coefficients of metric and N-connection with the formulas con-
structed above, one obtains a family of symmetric metrics

g = α0 ĥ3(x
i′)

{
∂i′ ln |φ̂(xk′

)| ∂j ′ ln |φ̂(xk′
)| dxi′dxj ′ + ∂p[∂pφ̌(p)]−2

× [[dp − (∂pφ̌(p))−1(dxi′∂i′ ln |φ̂(xk′
)|)]2 + ς(xk′

)(dϕ)2
]}

. (58)

The nontrivial w-coefficients, wi′ = − (∂pφ̌(p))−1∂i′ ln |φ̂(xk′
)|, induce a nontrivial solution

of the equations for the nonsymmetric component of the metric, see (45), which for the
symmetric configuration (58) is written in the form

∂p(w2′a34) = 0.

The solution of this equation can be represented in the form

a34 = (∂pφ̌(p))a
[0]
34 (xi′),
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where a
[0]
34 (xi′) is to be defined from certain boundary conditions for a fixed system of coor-

dinates xi′ .
The general nonsymmetric off-diagonal metric defining the pp-wave like Ricci wave evo-

lution of 4D Taub NUT spaces is

ǧ = g + a = α0 ĥ3(x
i′)

{
∂i′ ln |φ̂(xk′

)| ∂j ′ ln |φ̂(xk′
)| dxi′dxj ′

+ ∂p[∂pφ̌(p)] [[dp − (∂pφ̌(p))−1(dxi′∂i′ ln |φ̂(xk′
)|)]2 + ς(xk′

)(dϕ)2
]}

+ (∂pφ̌(p))a
[0]
34 (xi′) dp ∧ dϕ. (59)

This metric ansatz depends on certain type of arbitrary integration and generation functions
ĥ3(x

i′), φ̂(xk′
), ς(xk′

), φ̌(p) and a
[0]
34 (xi′) and on a constant α0 which can be identified with

the primary cosmological constant. It was derived by considering nonholonomic deforma-
tions of some classes of 4D Taub-NUT solutions parametrized by the primary metric (51) by
considering polarizations functions (53) deforming the coefficients of the primary metrics
into the target ones for corresponding Ricci flows. The target metric (58) model 4D Einstein
spaces with “horizontally” polarized, hλ(xk′

) and “vertically” running, vλ(p), cosmologi-
cal constant managed by the Ricci flow solutions. If we suppose that there is a nonsymmetric
tensor with nontrivial components a

[0]
34 (xi′) in a spacetime region, we can perform scenaria

with nontrivial nonsymmetric Ricci flow evolution of metrics.
We conclude that if the primary 4D topological Taub-NUT-AdS/dS spacetimes have the

structure of U(1) fibrations over 2D hypersurfaces (spheres, toruses or hyperboloids) than
their nonholonomic deformations to Ricci flow solutions with effectively polarized/running
cosmological constant define certain classes of generalized 4D Einstein spaces as foliations
on the corresponding 2D hypersurfaces. This holds true if the nonholonomic structures are
chosen to be integrable and for the Levi Civita connection. Additionally, such foliations may
be enabled with pp-wave moving nonsymmetric components for metrics.

Finally, we note that in more general cases, with nontrivial torsion, for instance, induced
from other models of classical or quantum gravity, we deal with “nonintegrable” foliated
structures, i.e. with nonholonomic Riemann–Cartan manifolds provided with effective non-
linear connection structure induces by off-diagonal metric terms. The nonsymmetric com-
ponents of the metrics under nonholonomic Ricci flow evolutions of Riemann–Cartan struc-
tures can be constructed in a similar form.

5 Solitonic pp-Waves and Nonsymmetric Ricci Flows of Schwarzschild Metrics

Alternatively to the solutions constructed in previous section, one can be generated new
classes of solutions of nonholonomic Ricci flow equations when the evolution parameter
is not identified to a spacetime coordinate. From physical point of view, we may treat such
solutions to define gravity models with variable on χ constants (in general, being effectively
polarized by holonomic–nonholonomic variables) and generalized (non) symmetric metrics
and metric compatible affine connections adapted to the nonlinear connection structure. The
aim of this section is to construct and analyze three classes of Ricci flow evolution equations
deforming nonholonomically certain physically valuable exact solutions in general relativity
into geometric configurations with nonsymmetric metric.



Int J Theor Phys (2009) 48: 579–606 597

5.1 Solitonic pp-waves in vacuum Einstein gravity and Ricci flows

We show how the anholonomic frame method can be applied for generating 4D metrics with
nontrivial antisymmetric terms defined by nonlinear pp-waves and solitonic interactions for
vanishing sources and the Levi Civita connection.

We use an ansatz of type (33),

δs2
[4] = −eψ(x,y,χ)(dx2 + dy2)

− 2κ(x, y,p) η3(x, y,p)δp2 + η4(x, y,p)

8κ(x, y,p)
δv2 (60)

δp = dp + w2(x, y,p)dx + w3(x, y,p)dy,

δv = dv + n2(x, y,p,χ)dx + n3(x, y,p,χ)dy

where the local coordinates are labelled x1 = x, x2 = y, y3 = p, y4 = v,and the nontrivial
metric coefficients are parametrized

ǧ1 = −1, ǧ2 = −1, ȟ3 = −2κ(x, y,p), ȟ4 = 1/ 8κ(x, y,p),

gα = ηαǧα.

For trivial polarizations ηα = 1 and w2,3 = 0, n2,3 = 0, the metric (60) is just the pp-wave
solution of vacuum Einstein equations [38], i.e.

δs2
[4pp] = ε1 dκ

2 − dx2 − dy2 − 2κ(x, y,p) dp2 + dv2/8κ(x, y,p), (61)

for any κ(x, y,p) solving

κxx + κyy = 0,

with p = z + t and v = z − t, where (x, y, z) are usual Cartesian coordinates and t is the
time like coordinate. The simplest explicit examples of such solutions are given by

κ = (x2 − y2) sinp,

defining a plane monochromatic wave, or

κ = xy(
x2 + y2

)2
exp

[
p2

0 − p2
] , for |p| < p0;

= 0, for |p| ≥ p0,

defining a wave packet travelling with unit velocity in the negative z direction.
For an ansatz of type (60), we write

η4 = 5κb2 and η3 = h2
0(b

∗)2/2κ.

A 3D solitonic solution of Einstein equations and its Ricci flows can be generated if b is
subjected to the condition to solve a solitonic equation. For instance, we can take η4 =
η(x, y,p) for the solitonic equation

η•• + ε(η′ + 6η η∗ + η∗∗∗)∗ = 0, ε = ±1, (62)
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or other nonlinear wave configuration. As a simple example, we can chose a parametrization
when

b(x, y,p) = b̆(x, y)q(p)k(p),

for any b̆(x, y) and any pp-wave κ(x, y,p) = κ̆(x, y)k(p), where q(p) = 4 tan−1(e±p) is
the solution of “one dimensional” solitonic equation

q∗∗ = sinq. (63)

In this case,

w1 = [(ln |qk|)∗]−1∂x ln |b̆| and w2 = [(ln |qk|)∗]−1∂y ln |b̆|. (64)

The final step in constructing such vacuum Einstein solutions is to chose any two functions
n1,2(x, y) satisfying the conditions n∗

1 = n∗
2 = 0 and n′

1 − n•
2 = 0 which are necessary for

Riemann foliated structures with the Levi Civita connection, see conditions (50). This means
that in the integrals of type (48) we shall fix the integration functions 2n1,2 = 0 but take such
1n1,2(x, y) satisfying ( 1n1)

′ − ( 1n2)
• = 0.

Summarizing the results, for vanishing source (vanishing effective cosmological con-
stants) in (36), (37) and (50), and for a fixed value of χ, we obtain the 4D vacuum off-
diagonal metric

δs2
[4off d] = −(dx2 + dy2) − h2

0b̆
2[(qk)∗]2δp2 + b̆2(qk)2δv2,

δp = dp + [(ln |qk|)∗]−1∂x ln |b̆| dx + [(ln |qk|)∗]−1∂y ln |b̆| dy,

δv = dv + 1n1dx + 1n2dy, (65)

defining nonlinear gravitational interactions of a pp-wave κ = κ̆k and a soliton q, depending
on certain type of integration functions and constants stated above. Such vacuum Einstein
metrics can be generated in a similar form for 3D or 2D solitons but the constructions will
be more cumbersome and for non-explicit functions, see construction and discussion of a
number of similar solutions in Ref. [34].

At the next step, we generalize the ansatz (65) in a form describing normalized Ricci
flows of the mentioned type vacuum solutions extended for a prescribed constant 0λ = r/5
necessary for normalization. We chose

δs2
[χ ] = −(dx2 + dy2) − h2

0b̆
2(χ)[(qk)∗]2δp2 + b̆2(χ)(qk)2δv2,

δp = dp + [(ln |qk|)∗]−1∂x ln |b̆| dx + [(ln |qk|)∗]−1∂y ln |b̆| dy,

δv = dv + 1n1(χ)dx + 1n2(χ)dy, (66)

where we introduced the parametric dependence on χ,

b(x, y,p,χ) = b̆(x, y,χ)q(p)k(p).

The values b̆2(χ) and 1n2(χ) are constrained to be solutions of

∂

∂χ

[
b̆2( 1n1,2)

2
]

= −2 0λ and
∂

∂χ
b̆2 = 2 0λb̆2 (67)
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in order to solve, respectively, (36) and (37) with evolution on χ. As a matter of principle,
we can consider a flow dependence as a factor ψ(χ) before (dx2 + dy2). For simplicity,
we have chosen a minimal extension of vacuum Einstein solutions in order to describe non-
holonomic flows of the v-components of metrics adapted to the flows of N-connection co-
efficients 1n1,2(χ). Such nonholonomic constraints on metric coefficients define Ricci flows
of families of vacuum Einstein solutions defined by nonlinear interactions of a 3D soliton
and a pp-wave.

Putting the values wi(x, y,p), defined by formulas (64), and 1n1,2(x, y,χ), defined by
formulas (67), into (29), see also (45), we get the equations for nonsymmetric component of
metrics, a34(x, y,p,χ), under Ricci flows

∂χ (w2a34) = 0 and ∂χ ( 1n1a34) = 0. (68)

There are two classes of solutions of this system of evolution equations: They first class is
given by the conditions

w2 �= 0, a34 �= 0, ∂χ (a34) = 0 and ∂χ ( 1n1) = 0,

which means that a nontrivial value of a34 will not evolve under Ricci flows and not interact
with the solitonic pp-waves from the symmetric part of the metric. The second class of
solutions, more interesting from physical point of view (with evolution on χ derived for
corresponding configurations of solitonic pp-waves), can be constructed if the function b̆ =
b̆(x,χ) does not depend on variable y. In this case, w2 = 0, but w1 �= 0, see (64), which
allows solutions with nontrivial 1n1,2(x, y,χ) and a34(x, y,p,χ) subjected to conditions

∂χ ( 1n1a34) = 0. (69)

The resulting families of metrics with nontrivial nonsymmetric components defining a
solitonic pp-wave evolution of the primary pp-wave symmetric vacuum solution can be
parametrized in the form

ǧ = g + a = − (dx ⊗ dx + dy ⊗ dy)

− [h0b̆(x,χ)(q(p)k(p))∗]2δp ⊗ δp + [b̆(x,χ)(q(p)k(p)]2δv ⊗ δv

+ a34(x, y,p,χ)dp ∧ dv, (70)

δp = dp + [(ln |q(p)k(p)|)∗]−1∂x ln |b̆(x,χ)| dx,

δv = dv + 1n1(x, y,χ)dx + 1n2(x, y,χ)dy,

where q(p) = 4 tan−1(e±p), for any 1n1 and 1n2 with ( 1n1)
′ − ( 1n2)

• = 0 and, for instance,
k(p) = sinp, or = 1/ exp[p2

0 − p2];h0 = const and p0 = const, for any functions b̆(x,χ)

and a34(x, y,p,χ) satisfying the conditions (67) and (69). The evolution in (70) is on a
real parameter χ which is different from the class of solutions in (59) where the evolution
parameter was fixed to be a time like coordinate. It should be noted that we took a very
special case of parametrization of pp-wave and solitonic interactions and their evolution
in order to be able to describe in explicit form such nonlinear Ricci flow configurations.
As a matter of principle, such configurations can be defined in nonexplicit form for more
general types of solitonic pp-wave interactions. We conclude that normalized nonholonomic
Ricci flows of vacuum pp-wave vacuum Einstein solutions naturally evolve into metrics with
nonsymmetric components.
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5.2 Nonholonomic Ricci Flows and 4D (Non) Symmetric Deformations of Stationary
Backgrounds

We show that Ricci flows subjected to corresponding nonholonomic deformations of the
Schwarzschild metric result in nonsymmetric metrics. There are analyzed such evolutions
defined by generic off-diagonal flows and interactions with solitonic pp-waves. We develop
for spaces with nonsymmetric metrics the methods developed in Refs. [31, 32]. We non-
holonomically deform on angular variable ϕ the Schwarzschild type solution into a generic
off-diagonal stationary metric.

5.2.1 General Nonholonomic Deformations

The primary quadratic element is taken

δs2
[1] = −dξ 2 − r2(ξ) dϑ2 − r2(ξ) sin2 ϑ dϕ2 + � 2(ξ) dt2, (71)

where the local coordinates and nontrivial metric coefficients are parametrized in the form

x1 = ξ, x2 = ϑ, y3 = ϕ, y4 = t,

ǧ1 = −1, ǧ2 = −r2(ξ), ȟ3 = −r2(ξ) sin2 ϑ, ȟ4 = � 2(ξ), (72)

for

ξ =
∫

dr

∣∣∣∣1 − 2μ

r
+ ε

r2

∣∣∣∣
1/2

and � 2(r) = 1 − 2μ

r
+ ε

r2
.

For the constants ε → 0 and μ being a point mass, the element (71) defines the Schwarz-
schild solution written in spacetime spherical coordinates (r,ϑ,ϕ, t).9

By nonholonomic deformations, gi = ηiǧi and ha = ηaȟa, where (ǧi , ȟa) are given by
data (72), we get an ansatz for which the coefficients are constrained to define nonholonomic
Einstein spaces,

δs2
[1def ] = −η1(ξ)dξ 2 − η2(ξ)r2(ξ) dϑ2

− η3(ξ,ϑ,ϕ)r2(ξ) sin2 ϑ δϕ2 + η4(ξ,ϑ,ϕ)� 2(ξ) δt2,

δϕ = dϕ + w1(ξ,ϑ,ϕ)dξ + w2(ξ,ϑ,ϕ)dϑ,

δt = dt + n1(ξ,ϑ)dξ + n2(ξ,ϑ)dϑ, (73)

where there are used 3D spacial spherical coordinates, (ξ(r),ϑ,ϕ) or (r,ϑ,ϕ). This class of
metrics is of type (42), with coordinates x1 = ξ, x2 = ϑ,y3 = ϕ,y4 = t.

The equation (37) for zero source gives this relation for the horizontal coefficients of
symmetric metric and respective polarization functions:

−h2
0(b

∗)2 = η3(ξ,ϑ,ϕ)r2(ξ) sin2 ϑ and b2 = η4(ξ,ϑ,ϕ)� 2(ξ),

9For simplicity, in this work, we shall consider only the case of vacuum solutions, not analyzing a more

general possibility when ε = e2 is related to the electric charge for the Reissner–Nordström metric (see, for
example, [39]). In our further considerations, we shall treat ε as a small parameter, for instance, defining a
small deformation of a circle into an ellipse (eccentricity).
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for

|η3| = (h0)
2|ȟ4/ȟ3|

[(√|η4|
)∗]2

, (74)

with h0 = const, where ȟa are stated by the Schwarzschild solution for the chosen system
of coordinates and η4 can be any function satisfying the condition η∗

4 �= 0. We can compute
the polarizations η1 and η2, when η1 = η2r

2 = eψ(ξ,ϑ,χ), from (36) with zero source, written
in the form

ψ•• + ψ ′′ = 0.

The solutions of (38) and (39) for vacuum configurations of the Levi Civita connection are
given by

w1 = ∂ξ (
√|η4|�)/

(√|η4|
)∗

�, w2 = ∂ϑ(
√|η4|)/

(√|η4|
)∗

and any n1,2 = 1n1,2(ξ,ϑ) for which 1n′
1 − 1n•

2 = 0.

Putting the defined values of the coefficients in the ansatz (73) we find a class of exact
vacuum solutions of the Einstein equations defining stationary nonholonomic deformations
of the Schwarzschild metric,

δs2
[1] = −eψ(dξ 2 + dϑ2) − h2

0

[(√|η4|
)∗]2

� 2 δϕ2 + η4�
2 δt2,

δϕ = dϕ + ∂ξ (
√|η4|�)(√|η4|

)∗
�

dξ + ∂ϑ(
√|η4|)(√|η4|

)∗ dϑ,

δt = dt + 1n1dξ + 1n2dϑ, (75)

where, at this step, the coefficients do not depend on Ricci flow parameter χ. Such vac-
uum solutions were constructed to transform nonholonomically a static black hole solu-
tion into Einstein spaces with locally anisotropic backgrounds (on coordinate ϕ) defined
by an arbitrary function η4(ξ,ϑ,ϕ) with ∂ϕη4 �= 0, an arbitrary ψ(ξ,ϑ) solving the 2D
Laplace equation and certain integration functions 1n1,2(ξ,ϑ) and integration constant h2

0.

In general, the solutions from the target set of metrics do not define black holes and do
not describe obvious physical situations. Nevertheless, they preserve the singular charac-
ter of the coefficient � 2 vanishing on the horizon of a Schwarzschild black hole if we
take only smooth integration functions. We can also consider a prescribed physical situation
when, for instance, η4 mimics 3D, or 2D, solitonic polarizations on coordinates ξ,ϑ,ϕ, or
on ξ,ϕ.

In this section, we consider a different model of nonholonomic Ricci flow evolution
when only the N-connection coefficients depend on flow parameter χ, but the d-metric
coefficients are re-scaled in the form: gij → e− 0λχgij and hab → e− 0λχhab, where gij and
hab are stationary values given by off-diagonal solution (75).The “nearest” extension to
flows of N-connection coefficients

w1 → w1(χ) = η3
1(ξ,ϑ,ϕ,χ)

∂ξ (
√|η4|�)(√|η4|

)∗
�

,

w2 → w2(χ) = η3
2(ξ,ϑ,ϕ,χ)

∂ϑ(
√|η4|)(√|η4|

)∗ ,
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n1 → n1(χ) = η4
1(ξ,ϑ,χ) 1n1,

n2 → n2(χ) = η4
2(ξ,ϑ,χ) 1n2, (76)

for

n′
1(χ) − n•

2(χ) = 0 and ηa
i (ξ,ϑ,χ) → 1 for χ → 0. (77)

For 0λ = 2r/5 and Rαβ = 0, (25) is satisfied if

h2
0

[(√|η4|
)∗]2 ∂ (wi)

2

∂χ
= η4

∂ (ni)
2

∂χ
. (78)

We can represent the integral of these equations in the form:

(wi)
2 = (ni)

2 η4

h2
0

[(√|η4|
)∗]2 + Fi, (79)

where Fi(ξ,ϑ,ϕ, ) are integration functions. The symmetric metric coefficients for such
Ricci flows are proportional to those for the exact solutions for vacuum nonholonomic de-
formations but rescalled and with respect to evolving N-adapted dual basis

δϕ(χ) = dϕ + w2(ξ,ϑ,ϕ,χ)dξ + w3(ξ,ϑ,ϕ,χ)dϑ, (80)

δt = dt + n2(ξ,ϕ,χ)dξ + n3(ξ,ϑ,χ)dϑ,

with the coefficients being defined by any solution of (78).
The nontrivial coefficient of the nonsymmetric metric can be computed by integrating

(29), which, in this section, reduce to

∂χ (w2a34) = 0 and ∂χ (n1a34) = 0,

with the partial derivatives on χ of N-connection coefficients constrained to satisfy (78). We
can express the equations for a34 = a34(ξ,ϑ,ϕ,χ) in the form

∂χ (η4
i (ξ,ϑ,χ)a34) = 0, (81)

where ni = η4
i

1ni are subjected to the conditions (77) and the coefficients wi are computed
following formulas (79).

We obtain that the family of nonsymmetric metrics

ǧ = g + a = −e− 0λχ+ψ(dξ ⊗ dξ + dϑ ⊗ dϑ)

− h2
0 e− 0λχ

[(√|η4|
)∗]2

� 2 δϕ ⊗ δϕ

+ e− 0λχη4�
2 δt ⊗ δt + a34 dϕ ∧ dt,

δϕ = dϕ + η3
1

∂ξ (
√|η4|�)(√|η4|

)∗
�

dξ + η3
2

∂ϑ(
√|η4|)(√|η4|

)∗ dϑ,

δt = dt + η4
1 × 1n1dξ + η4

2 × 1n2dϑ, (82)

with the coefficients constrained to satisfy the conditions (77)–(78), (81) and (79) define
the Ricci flow evolution of a Schwarzschild metric when the flows are considered for the
N-connection coefficients.
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5.2.2 Solutions with Small Nonholonomic Polarizations

The class of solutions (82) in defined in a very general form. Let us extract a subclasses
of solutions related to the Schwarzschild metric. We consider decompositions on a small
parameter 0 < ε < 1 in (75), when

√|η3| = q 0̂
3 (ξ,ϕ,ϑ) + εq 1̂

3 (ξ,ϕ,ϑ) + ε2q 2̂
3 (ξ,ϕ,ϑ) . . . ,√|η4| = 1 + εq 1̂

4 (ξ,ϕ,ϑ) + ε2q 2̂
4 (ξ,ϕ,ϑ) . . . ,

where the “hat” indices label the coefficients multiplied to ε, ε2, . . . . The conditions (74) are
expressed in the form

εh0

√∣∣∣ ȟ4

ȟ3

∣∣∣ (
q 1̂

4

)∗ = q 0̂
3 , ε2h0

√∣∣∣ ȟ4

ȟ3

∣∣∣ (
q 2̂

4

)∗ = εq 1̂
3 , . . .

We take the integration constant, for instance, to satisfy the condition εh0 = 1 (choosing a
corresponding system of coordinates). For such small deformations, we prescribe a func-
tion q 0̂

3 and define q 1̂
4 , integrating on ϕ (or inversely, prescribing q 1̂

4 , then taking the partial

derivative ∂ϕ, to compute q 0̂
3 ). In a similar form, there are related the coefficients q 1̂

3 and

q 2̂
3 . An important physical situation arises when we select the conditions when such small

nonholonomic deformations define rotoid configurations. This is possible, for instance, if

2q 1̂
4 = q0(r)

4μ2
sin(ω0ϕ + ϕ0) − 1

r2
, (83)

where ω0 and ϕ0 are constants and the function q0(r) has to be defined by fixing certain
boundary conditions for polarizations. In this case, the coefficient before δt2 is

η4�
2 = 1 − 2μ

r
+ ε

(
1

r2
+ 2q 1̂

4

)
.

This coefficient vanishes and defines a small deformation of the Schwarzschild spherical
horizon into a an ellipsoidal one (rotoid configuration) given by

r+ � 2μ

1 + ε
q0(r)

4μ2 sin(ω0ϕ + ϕ0)
.

Such solutions with ellipsoid symmetry seem to define static black ellipsoids (they were
investigated in details in Refs. [40, 41]). The ellipsoid configurations were proven to be sta-
ble under perturbations and transform into the Schwarzschild solution far away from the
ellipsoidal horizon. In general relativity, this class of vacuum metrics violates the conditions
of black hole uniqueness theorems [39] because the “surface” gravity is not constant for
stationary black ellipsoid deformations. Nonholonomic Ricci flows generalize the theory
to nonsymmetric metrics (similar effects can be modelled by string and/or noncommuta-
tive gravity corrections [34, 42] but with different parameters and without nonsymmetric
components of metrics).

We can construct an infinite number of ellipsoidal locally anisotropic black hole defor-
mations. Nevertheless, they present physical interest because they preserve the spherical
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topology, have the Minkowski asymptotic and the deformations can be associated to cer-
tain classes of geometric spacetime distorsions related to generic off-diagonal metric terms.
Putting ϕ0 = 0, in the limit ω0 → 0, we get q 1̂

5 → 0 in (83). This allows to state the lim-

its q 0̂
3 → 1 for ε → 0 in order to have a smooth limit to the Schwarzschild solution for

ε → 0. Here, one must be emphasized that to extract the spherical static black hole solution
is possible if we parametrize for χ = 0

δϕ = dϕ + ε
∂ξ (

√|η4|�)(√|η4|
)∗

�
dξ + ε

∂ϑ(
√|η4|)(√|η4|

)∗ dϑ

and

δt = dt + εn2(ξ,ϑ)dξ + εn3(ξ,ϑ)dϑ.

For Ricci flows on N-connection coefficients, such stationary rotoid configurations evolve
with respect to small deformations of co-frames (80), δϕ(χ) and δt (χ), with the coefficients
proportional to ε.

One can be defined certain more special cases when q 2̂
4 and q 1̂

3 (as a consequence) are
of solitonic locally anisotropic nature. In result, such solutions will define small station-
ary deformations of the Schwarzschild solution embedded into a background polarized by
anisotropic solitonic waves.

6 Conclusions and Perspectives

In this paper we have considered nonholonomic Ricci flows of (pseudo) Riemannian met-
rics resulting in solutions of evolution equations containing nonsymmetric components of
metrics. We have seen that a variety of well-known physically valuable solutions in general
relativity (like Taub NUT, pp-wave and solitonic wave and Schwarzschild metrics) will get
nontrivial anti-symmetric components of metrics if their physical parameters and/or certain
components of metric are allowed to run on a Ricci flow parameter which can be identified
with a time-like coordinate (for one type of solutions) or considered to be a general real one
varying on a finite interval (for the second type of solutions). A generic property of such
constructions is that certain classes of diagonal metrics (they can be, or not, exact solutions)
are extended to generic off-diagonal ones which define exact solutions for nonhomogeneous
and locally anisotropic Einstein spaces (with effective cosmological constant polarized on
coordinate and/or time variables; in a particular case, we can consider a usual cosmological
constant vanishing for vacuum configurations).

The off-diagonal metric coefficients can be effectively transformed into coefficients of a
nonholonomic frame with associated nonlinear connection (N-connection) structures. Such
geometric methods were elaborated in generalized Lagrange and Finsler geometry, but we
emphasize that in this work we restrict our considerations only to primary (pseudo) Rie-
mannian spaces and Riemann–Cartan spaces with effective torsion induced by nonholo-
nomic frames. The existence of nontrivial off-diagonal/N-connection coefficients is crucial
for obtaining in result of the Ricci flow evolution of nonsymmetric components of (target)
metrics. Moreover, we have found a possible relation to the Dirac’s hypothesis of variation
of physical constants which in our approach can be explained by running of such constants
under Ricci flows, together with possible locally anisotropic polarizations and more general
evolutions into nonholonomically deformed to (non) symmetric metrics and generalized
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connection structures. The characterization of target metrics in relation to generalized grav-
ity and matter field equations remain to be found. For simplicity, in this work we restricted
our analysis only to nonsymmetric metrics induced by Ricci flows and not as solutions of
certain field dynamics and constraints equations.

The results obtained in this paper, together with the former study of the nonholonomic
Ricci flow evolution of gravitational and regular mechanical systems, provide a strong geo-
metric ground for theories with nonsymmetric metrics. If we relax the hidden condition that
(Ricci) flows of Riemannian metrics must result only in Riemann metrics and subject the
evolution scenaria to certain nonholonomic constraints, we get that all “exotic” geometries
with symmetric and nonsymmetric metrics, generalized connections, nonholonomic and/or
noncommutative structures became “equal in rights”. An interference between gravitational
and matter field equations and Ricci flow evolution equations results naturally in a new
geometry and physics with a number of issues in classical and quantum gravity to be eluci-
dated.

This paper and works [10, 11] must be considered as the first steps toward the imple-
mentations of a more general programme to understand the full dynamics and geometry of
gravitational fields with symmetric and nonsymmetric metrics and generalized connections.
Even we start with (standard) models of gravity with symmetric metrics, the Ricci flow the-
ory “drive” us to nonholonomic configurations and nonsymmetric metrics. The next step
is to elaborate the geometry of nonholonomic spaces enabled with (non)symmetric metric
compatible connections [33].

Finally, it is worth noting that the present work can be extended to models with non-
commutative and/or spinor variables and applied in modern astrophysics and cosmology for
a study of scenaria with locally anisotropic/nonhomogeneous interactions. This informa-
tion will be helpful in distinguishing gravity theories and fundamental spacetime and field
interaction properties. Such subjects consist certain directions of our further investigations.
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